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Ahstract. The dynamics of Davydov solitons within the so-called ID,) state which allows 
quantum effects in the lattice are studied at physiological temperatues using Davydov's 
averaged Hamiltonian method. For this purpose the Euler-Lagrange method is used to 
obtain approximate equations of motion from a thermally averaged Hamiltonian. Within 
ID,)dynamicsat T =  OKand forparameiervaluesappropriate for proteins.nosolitonsare 
found. It is demonstrated that temperature effects at 300K shift the stability window for 
travelling solitons into regions of the parameter space which might be realistic for proteins. 

1. Introduction 

For the mechanism of energy transport through proteins, Davydov [l, 21 suggested that 
the energy of about 0.4 eV released by the hydrolysis of adenosine-triphosphate (ATP) 
could be transported in quanta of the amide-I (mainly C==O stretch) vibration (about 
0.2 eV). The CO groups participate in hydrogen bonds which form chains parallel to the 
axisof a-helical proteins. Thus the amide-I vibration interacts with the acousticphonons 
in these chains. The excitation of an amide-I oscillator 11.21 causes a distortion in the 
lattice which in turn stabilizes the amide-I excitation. It was found that for certain regions 
of the parameter spaceofthe model thiseffect canprevent the excitation from dispersion 
via the dipole-dipole coupling between neighbouring CO groups in the lattice. The 
region in which the vibrational energy is localized can travel as a soliton along the chain. 

In his original theory, Davydov and co-workers [l] used an ansatz for the wave- 
function (IDz)) which treats the lattice classically. At zero temperature it has been 
confirmed that Davydov solitons exist for parameter values appropriate for proteins [3]. 
Also their stability against disorder along the chain was studied [4]. The investigation of 
temperature led to controversial results. Halding and Lomdahl [SI found stable pulses 
at T = 310 K using classical molecular dynamics for peptide units moving in a Lennard- 
Jonespotential. Lomdahl andKerr [6] andothers [7] used the IDJansarz together with 
a damping and a noise term to introduce temperature and found no stable solitons at 
310 K at a specific set of parameters. Bolterauer [8] argued that their classical ther- 
malization scheme might lead to a too large transfer of energy into the quantum system 
(oscillators). Cottingham and Schweitzer [9]  applied perturbation theory to the Ham- 
iltonian after partial diagonalization and could show (again for one set of parameters) 
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that the soliton lifetime at 300 K is too short for biological processes. In  our previous 
work (4,10,11] we prepared the lattice in a thermally excited state prior to the soliton 
start. We compared our results with those of [6] and found agreement between the 
modelsifin the Langevin modell61 thelatticeisthermallyequilibratedbeforethesoliton 
starts. We could show that, in a window in the parameter space which might well be 
realistic for proteins, travelling solitons exist at 300 K. 

Recently Brown ?tal [12] haveshownthatthe I Ddstateansatz doesnot reproduce the 
dynamicsof the exactly solvable small-polaron limit (dipole-dipole coupling neglected). 
Davydov [2] introduced a more sophisticated ansalz state (I 0,)) which allows for quan- 
tum effects in the lattice. However, he used the energy expectation value for ID ,) as the 
classical Hamiltonian function to derive equations of motion [2]. It  was shown that with 
these equations 10,) does not reproduce the small-polaron limit [12] either. With these 
equations of motion and a thermally averaged Hamiltonian, Davydov 121 could show 
within the continuum limit that solitons exist at 300 K. Cruzeiro er ai 1131 reached the 
same conclusion numerically without making use of Davydov's approximations. 

Most recently Mechtly and Shaw [I41 and Skrinjar et a1 [lS] could derive new 
equations of motions for IDl) with the help of quantum mechanical methods. These 
equations of motion reproduce the small-polaron limit. However, in the general case 
also this ansafz state is still approximate. In [ 141 as well as in our work [16] it is shown 
that at T = 0 K the window for travelling solitons in the 10,) state occurs in regions of 
the parameter space which cannot be applied to proteins (soliton formation threshold 
X > 150 pN). 

2. Method 

In this paper we wish to report the results at T = 300 K using the ID I) state ansatz. The 
Hamiltonian [ 1,2] including disorder is given by 

A = E [ ( E ~  + ~, , )c ihci ,  - ~"(i;+ ,e,, + ahci,,,, 11 

ci,' and ci, are creation and annihilation operators, respectively, for quanta of amide-I 
oscillatorsat site n, and 6: and hk thecreation and annihilation operators, respectively, 
for acoustic phonons of wavenumber k. The translational mode has to be excluded from 
the summation. Eu is the excitation energy of a free oscillator (0.205 eV). and E, a site- 
dependent deviation from E,  due to disorder. J. is the dipole-dipole coupling constant 
between neighbouring amide-I oscillators (n and n + 1). For J .  usually 0.967 meV is 
used. X, is the coupling constant between the oscillators and the lattice. Note that we 
use the asymmetric interaction model where only the coupling of the oscillator n to the 
hydrogen bond between n and n + 1 in which the oscillator takes part is considered. For 
X usually a value of 62 pN is used. M,, are the masses of the amino acids. Here we have 
applied the average value of 114m, for all sites (m, is the proton mass). wk denotes the 
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eigenfrequency of the normal mode k and U contains the normal mode coefficients. w 
and U are obtained by numerical diagonilization of the matrix V with elements 

V", = l [ W . ( l  -a.,)+ W , , - I U  - ~ , , , ) P , , m  

- W,,(l - G,,N)Gm.,,+l - W"-l(l - a , , , ) ~ m , , , - , } ( ~ , ~ ~ m ) - l ' * .  (2) 

TheformofVimpliesthat WeusefreechainendsandNunits. Otherboundaryconditions 
such as cyclic [I31 or fixed chain ends [14] would require another form of V. W, is the 
force constant of the hydrogen bond betweensitesn and n + 1. For W ,  usually 13 N m-' 
[17] is applied. 

The 1 D ,)ansafz for inclusion of temperature in Davydov'sapproximation for solution 
of the time-dependent Schrodinger equation is 

ID l .  v) = a:,(t)a: \o)e\b,,3 v). (3) 

Here IO), is the exciton vacuum, and I&) a coherent phonon state. For the one- 
quantum oscillator states used here X 1 a,,\ ' = 1 holds. To include temperature approxi- 
mately we assume, as in [13], that a phonon distribution 

is present in the lattice where each normal mode is occupied by vk quanta. Here IO), is 
the phonon vacuum. We do not consider a thermal distribution of amide-I quanta since 
at 300 K the Boltzmann factor implies that only 3 of 10 000 amide-I oscillators would be 
thermally excited. Thus one can neglect a possible thermalized soliton distribution in 
the system too, since the presence of solitons requires first of all amide-I excitation. 
Then 

where the b,,k(r) are the coherent state amplitudes. Following the derivation of Cruzeiro 
eta1 [13] (done for cyclicordered chains) weobtain the thermally averaged Hamiltonian 

HT = ((6, + E,,)Ia;,l2 - J n  a :,* a:,+ D,,,, + I - J,, - I a:,* a,, - I D,,,,, - I  
n 



1918 W. Fomer 

and one obtains finally (see [16]) 

ih 
ihi, = - T a n  E (&&k - 6;;bn/;)  + E.U. - . I ~ D ~ , ~ + ~ Q ~ + ~  

ihb,k = f iWk(B, ,k + bnk) 

-JA+I.~ - bnkN(uk + lPn .n+ lan+ l / an  + u k D n + ~ . 4 + l / a n * 1  

-Jn-l(bn-l,k - bnk)[(uk + 1 ) D n . n - i Q n - i / a n  + L'kD,-i.,a;-,/a,*]. 

TO avoid numerical difficulties due to the denominators a, and a,* we used as initial 
condition (N = 50) 

~ ~ ( 0 )  = A[S,,,, + ~ " ( 1  - 6n,a,,)1 (10) 

where A is the normalization constant, x, = 0.005 as in [ 14) and no = 49. 
This method introduced by Davydov was criticized by several workers as being 

inconsistent with quantum mechanics. However, we feel that it might still be a reliable 
approximation to the real dynamics under physiological temperature. To investigate 
this we also give a comparison with quantum Monte Carlo simulations below. One can 
view the 'thermally averaged state' used here as a linear combination of all states with a 
fixed phonon distribution in the lattice, where the weight factors of the individual states 
follow Bose-Einstein statistics. In the appendix we outline a modified method using an 
atzsa&z which overcomes the conceptual difficulties mentioned above. Numerical results 
from this modified method will be subject of a future paper. However, since in previous 
work on Davydov's method [2, 131 his incorrect derivation of equations of motion was 
used, it seems to be interesting in itself to study the dynamicsof the system using correct 
equations. 

3. Results and discussion 

The equations of motion have been solved using a fourth-order Runge-Kutta method 
[18] and the dynamics were calculated over about 26 ps. We used as example the 
parameter set W = 30 N m-]  and X = 20 pN at 300 K, where a travelling soliton is found 
and varied r from 5 fs (sufficient for T = 0 K) to 0.3125 fs to 0.156 25 fs. The results did 
not change using the last two r-values and the total energy is conserved in the region of 
1-50 neV. the norm in the 1-SO ppb region. The small size of 5 is necessary, because in 
the exponents of D,, the time variation in bnk is multiplied by uk which for small 
frequencies is of the order 100. To be sure that the results are not simply numerical 
garbage due to the small r-value or small denominators a., we compared the above- 
described calculation with that using double precision (128 bit per word) instead of the 
usual single precision (64 bit per word) through 10.5 ps. The results of both calculations 
are the same. As figure I (a) shows for the above-mentioned example with 5 = 0.3125 fs 
the soliton disperses after reflection at the chain end. Thus we had to test whether this 
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Figure 1.Timeevolutianoftheprobability to findan amide-I quantum ~a.(r)l'at site n (W = 
30N m - ' , X =  20pN) at T =  300K(t  = 0.3125 fs): (a) N= 50: (b) N= 70. 

FIgure2.Surveyafthe(X, W)parameterfortheID,}nnsnrzstate:(a) T = O K , r  = Sfs;(b) 
T = 300 K ,  r = 0.15625fs. Each circle denotes a simulation (0, travelling soliton; K, 
travelling, slowly dispersive solitary wave; @. pinned soliton; 0, dispersion alter interaction 
with lattice sound reflected from the chain end; a, pinned alter interaction with lattice 
sound); all calculations over about 26 ps. 

dispersion is only due to reflection at the free boundary or due to the lifetime of the 
soliton in the system. For this purpose we repeated the simulations using N = 60 and 
N = 70 units (figure l(b)). Obviously the soliton is destroyed only at the chain end and 
can pass through much longer chains also. 

We performed a survey of the (X, W) parameter space. The results are shown in 
figure 2, where each circle represents a simulation performed (7.8 h CPU time on a CDC 
Cyber 995E computer for each simulation at 300 K with r = 0.156 25 fs). Obviously at 
T = 0 K, solitons occur at much larger values of X (figure 2(a)) and smaller values of W 
than at 300 K (figure 2(b)). The reason for that is the negative real part of the exponents 
in D,, which increases in absolute value for increasing T.  In turn these factors decrease 
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Figure 3. The averaged quantily (A,) (see text) as 
functionofsiteforW= 1 3 N m - ' , X = f 2 p N . a t T =  
50 K .  

effectively the dipole-dipole coupling J which is responsible for dispersion. I n  this way 
a larger temperature can stabilize solitons at smaller values of X. This is consistent with 
resultsreported by Cruzeiro e f a l [ l 3 ] ,  although the effect is far more pronounced in our 
case using the quantum mechanically correct equations of motion. 

One may ask whether it is correct to introduce temperature in an averaged way as 
done here and, if not, whether fluctuations taken explicitly into account could destroy 
the solitons. However, we have shown in our previous work [ l l ]  that in case of the 1 DJ 
ansatz models with explicit random fluctuations and our model using a lattice prepard 
to T = 300 K in a deterministic way lead to comparable results.Thus we are confident 
that in the IDi) case the same conclusion holds. The other problem is the approximate 
nature of the IDl) state. To improve the umufz in this respect we plan to take two- 
phonon termsinto accout in the generator of the unitary transformation [15]. However, 
it would be desirable to extend the exact quantum Monte Carlo simuations performed 
by Wang ef al I191 for W = 13 N m-', X = 62 pN. to parameter values where we find 
travelling solitons to confirm our conclusions. It is difficult to compare simulations such 
asours with theequilibriumcalculationsin [19]. However, weintroduced thesymmetric 
interaction and cyclic boundary conditions into our program and found no soliton at 7 
and 11.2 K for the parameter values used in [19]. However, at 0.27 and 2.8 K where 
Wang ef al reported coherent structures we found a clear dispersion of the initial 
excitation either. At 300 K we observe a (N = 25, n, = 13) highly localized structure 
which might bearsomesimilaritiestoasmallpolaron becauseof the smalleffectivevalue 
of JD,,. To obtain a comparable plot we detected at each time step the site n with 
maximum excitation probability In,. Iz. Then we rotate the coordinate system such that 
n' = 13afterrotation. ThenA,(r) = [q.+, ( t )  - qn(f)] \a , , -  I -* iscomputedandaveraged 
over all time steps. In figure 3 we show this quantity ((A,)) for T = 50 K. Note that in 
our simulations the small polaron-like structures show up between 40 and 50K. 
Obviously the curve is similar to those shown in [19]. The minimum (Ai3) = -0.1 A is 
close to the infinite-temperature limit found in [19] of -0.095 A, 

Scott [ZO] argues that, in an @-helix, three coupled chains are present. In order to 
simulate three chains with a one-chain model, Scott emphasizes that larger values of W 
andM(=342mp)shouldbeused. Weperformedsimulationsat300 Kwiththeparameter 
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sets of Scott. However, it would probably be more reasonable to treat the three coupled 
chains explicitly. Work along this line is in progress. At W = 39 and 58.5 N m-', X = 
35 pN, we find a travelling soliton for roughly 10 ps. It disperses after interaction with 
the lattice sound. Thus in larger chains it might be able to survive for more than roughly 
30 lattice sites. At the corresponding parameter values with X = 62 pN we find an 
irregularly moving soliton for the two values of W .  In other preliminary calculations we 
found travelling solitons for X = 20 pN and W = 50 and 60 N m-' but not below W = 
50 N m-'. Therefore the larger mass considerably influences the window of soliton 
formation. 

4. Conclusion 

Keeping all limitations in mind we conclude that Davydov solitons remain stable at 
X = 4 M O  pN if W > 50 N m-l holds. This might well be the case in proteins since 
the value W = 13 N m-' usually quoted is from crystalline formamide [17] where free 
hydrogen-bonded molecules vibrate while in proteins a vibration of a hydrogen bond 
requires distortion of the covalently bound helical backbone. This should increase the 
effective value of U'substantially compared with 13 N m-'. 

Thus theoretically the existence of Davydov solitons seems to be quite probable in 
proteins at 300 K. However, a definitive answer to the question of the existence of 
Davydov solitons can only be given by experiment. For instance injection-detection 
experiments as proposed by Knox [21] would be highly desirable. 

Acknowledgments 

The financial support of the Deutsche Forschungsgemeinschaft (project Ot/56-2) and 
of the Fonds der chemischen Industrie is gratefully acknowledged. 

Appendix 

In our modified ansatz we use a lattice already prepared with a thermal phonon dis- 
tribution IT) as we did in case of the classical ID2) ansatz state [ll] instead of starting 
from a thermally averaged Lagrangian: 

l& ,T)=  2a"(r)d; lo)<wnlT) .  ('41) 
n 

Here Wn is a unitary displacement operator 

W m  = exp(S,) 

3, = (bnk6: - b:kbk). 
k 
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I T) is a coherent state with I Bk I 2  phonons in each normal mode k: 

I T )  = exp(il  IO), 

f =  (Bk6xf - B l 6 , ) .  
h 

IS, l2 is computed according to Bose-Einstein statistics: 

IBk Iz = l/[exp(fLwk/kBT) - 11 = U:. 
I Tk) is an exact solution of the time-dependent Schrodinger equation 

iii(a/at)\T,)= iiwk(6:6,  IT^) 
if 

B k ( t )  = IBklexp(-iwkt). 

Furthermore 

onkIT.d= e x p ( L )  exp(Tk,)lO), = exp(i[Snk, Tk])e~p(&k + fk )MP.  
With 

Is.,, f J =  b,kBi - b2.Bk 
we obtain our final ansatz state as 

~ ~ , , ~ ) = ~ : u . ( i ) d : ~ o ) , e x p ( i ~ : ( b , ~ ~ :  n k - ~ L B ~ ) )  

x exp(x  k (cnkbf - GS,)) IO), 

where 
cnK(f) = bnk(t) + u k  exp(-iwkt). 
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- (bnk - bmk)uk eiWx ( ~ 1 4 )  

From this, equations of motion are obtained with the help of the Euler-Lagrange 
equations: 

(d/dt)(JL/Ja,) - JL/aa. = 0 

(d/dt)(JL/Jh.k) - aL/Jb,k = 0. ('415) 
In [15] it is shown that for the 10,) state the Euler-Lagrange method leads to the same 
equations of motion as projection techniques, time-dependent variation principle and 
Heisenberg operator equations, while Davydov's method [13] (treating(Dl i f i l D l )  as a 
classical Hamiltonian function) leads to different equations of motion, which do not 
even reproduce special analytically soluble cases (J = 0). The explicit form of the 
equations derived from (15) and our modified ansatz state as well as numerical appli- 
cations will be published elsewhere. 
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